Numerical Simulations of Variably Saturated Flow with Energy and Water Phase Change in Northern Latitude Peatland

Collin A. Macheel
Dept of Mining and Geological Engineering
University of Alaska, Fairbanks
Additional support and contributors

- Daanen, P. Ronald, Geophysical Institute, University of Alaska Fairbanks, Fairbanks AK 99775-7320
- Misra, Debasmita, Department of Mining and Geological Engineering, University of Alaska Fairbanks, P.O. Box 755800, Fairbanks, AK 99775
- McGuire, A. David, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775
- Turetsky, Merritt, Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G2W1
- Waddington, Mike, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S4L8
- Kane, Evan, Department of Plant Biology, Michigan State University, East Lansing, MI 48824
• 25-30% of the world’s soil C
• Predominant in N Latitudes
• Up to 21% global CH₄ emissions
• Net sink of CO₂
Ecological Research Site

- Subsurface temperature
- Water fluxes and climatic data
- Water level manipulations
- Microbial populations
- Vegetative response to WT and climate manipulations
Diurnal Temp Fluctuations

- Air
- -2cm
- -10cm
- -25 cm
- -50 cm
Porosity decreases with depth

\(\rho_b \) increases with depth

\[\lambda, C \]

Thermal Conductivity Models

- Kettridge, 2008
- Kellner, 2009
- Letts, 1999
- Hayashi, 2008
- Weiss, 2006
- McKenzie, 2007a
- McKenzie, 2007b

![Thermal Conductivity Models](image)

```latex
\text{Thermal Conductivity} \quad \text{W/mK}
```
Thermal conductivity functions

- Weighted average of soil constituents
 (De Vries, 1963)

\[k = \frac{f_w k_w + y_o f_o k_o + y_a f_a k_a}{f_w + y_o f_o + y_a f_a} \]

- Similar to an Arithmetic mean (Forouki, 1986)

\[k = (n - \theta)k_a + (f_o + \theta)k_o \left(\frac{f_o}{f_o + \theta} \right)k_w \left(\frac{\theta}{f_o + \theta} \right) \]

- Summation of Heat Capacities

\[C = \sum_{i=1}^{n=3} f_i C_i \]
Soil Moisture Retention

\[\theta(\Psi) = \theta \left(-\frac{\gamma_{wa} \Delta_s^1 H_m^*}{\gamma_{iw} T_{fus} \Delta_s^1 v_m^* \rho_{wg}} \frac{t}{1} \right). \]

SFCC

Vol. Moisture Content vs. Pressure (cm)

Temp (C) vs. Freeze Function (1/C)
Applied in HYDRUS (2D/3D)

$R^2=0.54$, $RMSE=7.5°C$
Applied in HYDRUS (2D/3D)

R^2=0.75 RMSE=1.7C

Weiss vs Observed

T (degree C)

t (hours)
Inverse Solution Tools

$R^2=0.90$, $RMSE=1.2C$
Inverse Solution Tools

R² = 0.989, RMSE = 0.37°C
• Assuming Soil Surface Temp dependent on three variables

• Air T, WT and time/season

• Regression characterized by multi-variable paraboloid

\[
R=0.83, \quad R^2=0.74, \quad SE=1.78 \quad n=113
\]
Acknowledgements

- Dr. David McGuire for making travel to the annual AEG Conference at Lake Tahoe possible. Support from the National Science Foundation grant DEB-0425328, the Bonanza Creek Long-Term Ecological Research program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research grant PNW01-JV11261952-231. Also legal advice from the attorneys at Dewey, Cheatum and Howe.