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Quo vadis, Remote Sensing of Permafrost?

In Situ Sensing Initiatives Remote Sensing Initiatives

Thermal State of Integrated Global Observing Strategy
Permafrost (TSP) (IGOS) Cryosphere Theme

Circumarctic Active Permafrost Global Inter-agency IPY Polar Snapshot
Layer Monitoring (CALM) Year (GIIPSY)

ACCO-Net, AON, etc.
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Cryosphere Satellite Missions - Sta‘tus of Observations Integrared Global Observing Strategy
- Shortcomlngs In Current For the Monitoring ofjour Environment from Space and from Earth
= Observations
. - Recommendations:

Development of Frozen
Ground Observations

GIIPSY
-Science Goal and Obijectives
-Observation objectives

2007
An international partnership for
cooperation in Earth observations




Definition of ,Permafrost Degradation’

A naturally or artificially caused decrease in the thickness and/or areal
extent of permafrost (National Research Council of Canada Technical
Memorandum No0.142.1988).

Expressed as
- a thickening of the seasonal active layer
- a lowering of the permafrost table

- a reduction in the areal extent of permafrost

- or the complete disappearance of permafrost.
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Thermokarst: Processes and landforms resulting from thawing of ice-rich ground,
I.e. surface subsidence related to a volume loss due to ground ice melting.

Lena Delta, North Siberia

a

Yakutsk, Central Siberia

Three Main Messages: |

- Degradation is not restricted to the southern qr -
permafrost boundary, where warm permafrost A
prevails

-High impact changes are likely to happen

where permafrost is most vulnerable: regions e
of warm permafrost or high ice content B
- Degradation is closely related to hydrological | :;

+ geomorphological change



Distribution of Ice-Rich Yedoma (Ice Complex)
Deposits in North Siberia
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- Thickness of the deposit is between 5-100m

- Present day total coverage is > 1x106 km

- Gravimetric ground ice contents in the sediments between 60-120%
- Including the ice wedges, total volumetric ice content of up to >75%
- Organic carbon content averages between 2-5%

- Accumulation during several 10 000 years

Zimov et al 2006 (Science), Schirrmeister et al., in review



Ice-rich Permafrost in North Eurasia

Impacts of thermo-erosion at the coast: Impacts of thermo-erosion inland:
- coastal erosion rates (up to 12m/yr) - fluvial erosion rates (several m/yr)
- coastal morphology - fluvial morphology

- sediment and carbon transport - lake growth and drainage

- land loss - sediment and carbon transport

Kurungnakh Island / j Q)

Muostakh Island Oyagoss Yar coast
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Key parameters that can be measured with remote sensing
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Relief change due to permafrost degradation
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Quantification of Thermokarst Terrain with Remote Sensing and a DEM
G. Grosse, L. Schirrmeister, T. Malthus

Study site: Cape Mamontov Klyk

- based on Landsat-7 EMT+ and Corona satellite data, a DEM,
cryolithological field data, and terrain surface characteristics
- goal was to quantify the amount of thermokarst-affected terrain

Wet polygonal tundra in Riverine floodplain with Moist, Edoma-type
thermokarst basin polygonal tundra upland tundra

Riverine barren, Wet lowland tundra in Dry slopes with
Fluvial sand terrace Thermo-erosional valleys thermokarst hills

Grosse et al, 2006 (Polar Research)



Quantification of Thermokarst Terrain with Remote Sensing and a DEM

Late Pleistocene -

Holocene

G. Grosse, L. Schirrmeister, T. Malthus
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- Ice-rich permafrost deposits of the Ice Complex (Late Pleistocene)
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Grosse et al, 2006 (Polar Research)



Quantification of Thermokarst-Affected Terrain with Landsat-7 data and a DEM
G. Grosse, L. Schirrmeister, T. Malthus
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Dry to moist tundra at slopes Wet lowland tundra in thermo-erosional valleys

Grosse et al, 2006 (Polar Research)



Classification of Thermokarst-Affected Terrain with Landsat-7 data and a DEM
G. Grosse, L. Schirrmeister, T. Malthus
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Key parameters that can be measured with remote sensing
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Distribution of Lakes in Permafrost Regions of the Arctic

Permafrost

Continuous

Lakes | SMith et al. (2007):

*| S R - High abundance of lakes >0.1 km?2 in
— Arctic permafrost vs. non-permafrost
areas (N of 45.5° latitude)

- Relative homogeneous distribution of lakes
>0.1 km? across different permafrost zones

- Unfortunately no classification according to
ice content

Gutowski et al. (2007):
- Distribution of Arctic wetlands and

Smith et al. 2007, Lehner & Déll 2004 Ia_tkes hgs Impact on atmospheric
Brown et al. 1997, 2001 circulation pattems
Land area Number | Lake area | Density (lakes | Lake area
(km?) of lakes (km?) / 100 km?)* fraction (%)**
PF 20815400 | 148 303 414 400 0.712 1.99
No PF | 20 490 300 54 453 175 100 0.266 0.85

Includes only lakes >10 ha (0.1 km?)
*  Number of lakes / Land area x 100
**  Lake area / land area x 100



Distribution of Thermokarst Lakes and Ponds in Siberian Yedoma Regions

Objectives: Characterization of the spatial distribution of
thermokarst lakes in ice-rich permafrost areas using high-resolution
satellite imagery (SPOT-5: 2.5m, IKONOS-2: 1m)
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Grosse et al, in review




Distribution of Thermokarst Lakes and Ponds in Siberian Yedoma Regions
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Lakes <10 ha (0.1 km?) :
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S % 3% 8% ;1% 8 : ¢ OLE: 42.7 % of total lake area per 100 km?

N A S BYK: 21.6 % of total lake area per 100 km?
------ T 5 CHE: 82.2 % of total lake area per 100 km?

These lakes are not considered in current global
databases (e.g. GLWD of Lehner & Dall, 2004) or
spatial analyses (e.g. Smith et al., 2007)!

Grosse et al, in review



Key parameters that can be measured with remote sensing
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Thermokarst and C-Cycle

Walter et al, 2006 (Nature), Walter et al, 2007 (Phil. Trans. Royal Soc. A)



Thermokarst and C-Cycle

Thermokarst Lakes as a Source of Atmospheric CH, During the Last Deglaciation

Olenek Channel, Lena Delta Kolyma Lowland
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Thermokarst Lakes: Permafrost Degradation and C-cycling in the Arctic

Carbon Cycle Sciences
/ 2008-2011

Assessing the spatial and temporal dynamics
of thermokarst, methane emissions, and

related carbon cycling in Siberia and Alaska
G. Grosse (PI), K. Walter (Co-Pl),
V. Romanovsky (Co-PlI)

RS-based classification and
change detection, GIS-based
upscaling G. Grosse, USA

Integration into Earth
System Models
P. Valdes, UK

Paleoecology and
paleoenvironmental dynamics

M. Edwards, USA+UK

Thermokarst
+ Lake
Dynamics

Permafrost Modeling
V. Romanovsky, USA

IPY OPP
2008-2011

Nartional Science Foundation

IPY: Understanding the impacts of
thermokarst lakes on C-cycling and

climate change
K. Walter (PI), G. Grosse (Co-PI), L. Plug
(Co-PI), M. Edwards (Co-PI), L. Slater (Co-PI)

Biogeochemistry and Greenhouse
Gas Fluxes K. Walter, USA

Numerical modeling of lakes
and landscapes L. Plug, CAN

Geophysics of thermokarst lakes
and sediment gas contents L.
Slater, USA

Carbon Cycling
S. Zimov, Russia



Thermokarst Lakes: Permafrost Degradation and C-cycling in the Arctic

2008-2011

Carbon Cycle Sciences

Assessing the spatial and temporal dynamics
of thermokarst, methane emissions, and
related carbon cycling in Siberia and Alaska

G. Grosse (PI), K. Walter (Co-Pl),
V. Romanovsky (Co-PlI)

MODIS, Landsat, Hyperion,
ALOS PRISM+AVNIR-2,
Spot, Ikonos, Corona, aerial
imagery

—>

ALOS PALSAR
Radarsat
TerraSAR-X

Primary study areas:
Seward Peninsula, Alaska
Kolyma Lowland, Siberia

Thermokarst characterization,
classification, up-scaling to

regional scales, quantification,
and change detection

Thermokarst

Dynamics
Greenhouse Gas Emissions
from Thermokarst Lakes

Secondary study areas:
Bykovsky Peninsula & Yakutsk region, Siberia
Toolik Field Station & Fairbanks region, Alaska



Temporal Changes of Thermokarst Lakes in Siberian Yedoma Regions
G. Grosse, V. Romanovsky, K. Walter, S. Zimov

Bykovsky Pensinsula: : ;'?-"’V-wam
{0.39m/yr)
- of 308 randomly K Jasm
selected lakes, 244 hl
indicate shrinkage, 44
growth, and 20 lakes
drained completely
- Net shrinkage is 24.4

ha (-2.9%)
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resolution)

Bykovsky Peninsula (Corona KH-
4B 1969 vs. Spot-5 2002) (2.5m
ground resolution)

New thaw slump
in September 2007

Grosse et al, in prep



PALIMMN - Pan-Arctic Lake-lce Methane Monitoring Network

ETLW W 12ow
O Project study site
£1 @ PALIMMN Network site

An open network to quantify methane emissions [ remsrost mn oo
from northern lakes using field and SAR data “’”E‘“;_r

(K. Walter & G. Grosse)
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Collaborators so far:
C. Duguay, T. Christensen, D. White, R. Striegl, A. Larson, M. Wilmking



Challenge #1:. The Remote Observation of Permafrost

How do we monitor something that is not a single object itself, sits invisible
under the land surface, and is solely defined by temperature?

Present:

Young in situ monitoring networks

Good Modeling capabilities

Limited study areas

Limited availability of sensor types (resolution vs. coverage vs. spectral characteristics)
Indirect RS observation of land surface features and parameters

Goals:

- Expand in situ monitoring coverage, parameters, temporal resolution, and network lifetime

- Expand to regional / hemisperical scale monitoring of general surface properties using existing
sensors

- Annual or multi-annual RS snapshots of complete permafrost region
- Further develop modeling capabilities
- Develop new focused sensors capable of

a) sensing physical surface parameters relevant to permafrost modeling (e.g. T, snow)
b) direct observation of subsurface conditions



Challenge #2: Data Availability and Access

Present:

Poor spatial coverage of Arctic regions

Poor temporal resolution of time series

Classification of RS data and restricted use in some countries
High costs for high-resolution data

Goals:

- Succeed with IPY multi-sensoral snapshot (GIIPSY) and repeat

- Increase of temporal monitoring frequencies

- Develop scaling rules to bridge gaps between high and low resolution sensors
- Better and cheaper access to RS data

- Unrestricted scientific data exchange

- Provide RS software tools ready to use for end users



Challenge #3: Precise Elevation Data

Goals:
-Quantifying of past+future thaw subsidence (few cm / yr)

-Modeling of permafrost hydrology

- we weesssss messsssw O Kilometers
0 5 10 20 30 40 50

DEM






Recommendations

- Monitoring in high detail; surface relief and thaw settlement, hydrological dynamics,
coastal and fluvial dynamics, etc.

- Hemispherical monitoring of permafrost-relevant parameters with RS can be done with
medium to coarse resolution sensors (important variables are: Temperature,
snow, soilmoisture, vegetation cover, incoming solar radiation, etc.)

-The expansion of RS capabilities with Arctic coverage and sufficient funding of ground
truth networks is necessary

- Upscaling and modeling will play a major role in bridging the spatial and temporal gaps
in understanding and predicting permafrost degradation: Delivering physical
parameters from RS for modeling will be key to permafrost monitoring



