# Model of soil freezing and thawing

In many practical applications, heat conduction is the dominant mode of energy transfer in a ground material. Within certain assumptions (Kudryavtsev, 1978; Andersland and Anderson, 1978) the soil temperature can be simulated by a 1-D heat equation with phase change (Carslaw and Jaeger, 1959):

The quantities and represents the volumetric heat capacity and thermal conductivity of soil, respectively; is the volumetric latent heat of fusion of water, and is the volumetric water content. The heat equation (1) is supplemented by initial temperature distribution , and boundary conditions at the ground surface and at the depth . We use the Dirichlet boundary conditions, i.e. , . Here, is the temperature at at time ; and are observed temperatures at the ground surface and at the depth , respectively.

One of the commonly used measures of liquid water in the freezing soil is the volumetric unfrozen water content (Anderson and Morgenstern, 1973; Osterkamp and Romanovsky, 1997; Watanabe and Mizoguchi, 2002; Williams, 1967). There are many approximations to in the fully saturated soil (Galushkin, 1997; Lunardini, 1987). The most common approximations are associated with power or exponential functions. Based on our positive experience in Romanovsky and Osterkamp (2000), we parameterize by a power function for (Lovell, 1957). The constant is called the freezing point depression. In thawed soils (), the amount of water in the saturated soil is equal to the soil porosity . Therefore, we assume that

where represents the liquid pore water fraction. For example, small values of describe the liquid water content in fine-grained soils, whereas large values of are related to coarse-grained materials in which almost all water freezes at the temperature .

We adopt the parametrization of thermal properties proposed by (de Vries, 1963; Sass et al., 1971) with some modifications. We express thermal conductivity of the soil and its volumetric heat capacity as

where and are the effective volumetric heat capacities, respectively, and and are the effective thermal conductivities of soil for frozen and thawed states, respectively. For most soils, seasonal deformation of the soil skeleton is negligible, and hence temporal variations in the total soil porosity, , for each horizon are insignificant. Therefore, the thawed and frozen thermal conductivities for the fully saturated soil are obtained from

where subscripts , , and mark heat capacity , thermal conductivity for ice at , liquid water at and solid soil particles, respectively. Combining formulas in (4), we derive that

Hence, the thermal properties and are expressed by only four variables such as , , , and .

Evaporation from the ground surface and from within the upper organic layer can cause partial saturation of upper soil horizons (Kane et al., 2001; Hinzman et al., 1991). Therefore, formulae (4) need not hold in the presence of live vegetation and within organic soil layers, and possibly not within organically enriched mineral soil (Romanovsky and Osterkamp, 1997). Besides organic and organically enriched mineral soil layers, there are other horizons, all of which can have distinctive physical properties, texture and mineral composition. We assume that there are several horizons, namely: an organic layer, an organically enriched mineral soil layer, and a series of mineral soil layers. We assume that physical and thermal properties do not vary within each horizon, and hence , , can be assumed to be constants within each soil horizon:

where the index marks the index of the soil layer. Table 1 shows a typical soil horizon geometry and the commonly occurring ranges for the porosity , thermal conductivity and the coefficients , parameterizing the unfrozen water content.