Resilience and vulnerability of permafrost to climate change
Title | Resilience and vulnerability of permafrost to climate change |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | Jorgenson, T, Romanovsky, VE, Harden, J, Shur, Y, O’Donnell, J, Schuur, EAG, Kanevskiy, M, Marchenko, SS |
Journal | Canadian Journal of Forest Research |
Volume | 40 |
Pagination | 1219 - 1236 |
Date Published | 2010 |
Abstract | The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as –20 °C. To assess these interactions, we compiled existing data and tested effects of varying conditions on mean annual surface temperatures (MASTs) and 2 m deep temperatures (MADTs) through modeling. Surface water had the largest effect, with water sediment temperatures being 10 °C above MAAT. A 50% reduction in snow depth reduces MADT by 2 °C. Elevation changes between 200 and 800 m increases MAAT by up to 2.3 °C and snow depths by 40%. Aspect caused only a 1 °C difference in MAST. Covarying vegetation structure, organic matter thickness, soil moisture, and snow depth of terrestrial ecosystems, ranging from barren silt to white spruce (Picea glauca (Moench) Voss) forest to tussock shrub, affect MASTs by 6 °C and MADTs by 7 °C. Groundwater at 2–7 °C greatly affects lateral and internal permafrost thawing. Analyses show that vegetation succession provides strong negative feedbacks that make permafrost resilient to even large increases in air temperatures. Surface water, which is affected by topography and ground ice, provides even stronger negative feedbacks that make permafrost vulnerable to thawing even under cold temperatures. |
URL | http://dx.doi.org/10.1139/x10-060 |