Vulnerability of high-latitude soil organic carbon in North America to disturbance

TitleVulnerability of high-latitude soil organic carbon in North America to disturbance
Publication TypeJournal Article
Year of Publication2011
AuthorsGrosse, G, Harden, J, Turetsky, M, A. McGuire, D, Camill, P, Tarnocai, C, Frolking, S, Schuur, EAG, Jorgenson, T, Marchenko, SS, Romanovsky, VE, Wickland, KP, French, N, Waldrop, M, Bourgeau-Chavez, L, Striegl, RG
JournalJournal of Geophysical Research - Biogeosciences
Volume116
PaginationG00K06
Date Published2011/07/28
ISBN Number0148-0227
Keywords0428 Biogeosciences: Carbon cycling (4806), 0475 Biogeosciences: Permafrost, 0486 Biogeosciences: Soils/pedology (1865), 0716), 1630 Global Change: Impacts of global change (1225, 4321), 9350 Geographic Location: North America, and high-latitude processes (0702, cryosphere, disturbance, high latitudes, North America, peatlands, Permafrost, soil carbon
Abstract

This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool’s character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.

URLhttp://dx.doi.org/10.1029/2010JG001507