Field information links permafrost carbon to physical vulnerabilities of thawing
Title | Field information links permafrost carbon to physical vulnerabilities of thawing |
Publication Type | Journal Article |
Year of Publication | 2012 |
Authors | Harden, JW, Koven, CD, Ping, C-L, Hugelius, G, A. McGuire, D, Camill, P, Jorgenson, T, Kuhry, P, Michaelson, GJ, O’Donnell, JA, Schuur, EAG, Tarnocai, C, Johnson, K, Grosse, G |
Journal | Geophys. Res. Lett. |
Volume | 39 |
Pagination | L15704 |
ISBN Number | 0094-8276 |
Keywords | 0475 Biogeosciences: Permafrost, 0716), and high-latitude processes (0702, carbon pools, cryosphere, deep carbon, Earth system model, nitrogen pools, Permafrost, soil |
Abstract | Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3 m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative distributions of active layer thickness (ALT) under current and future climates. The difference in cumulative ALT distributions over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N. Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems. |
URL | http://dx.doi.org/10.1029/2012GL051958 |